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Abstract

Atrial Fibrillation (AF) is the most common supra-
ventricular arrhythmia and has different underlying acti-
vation mechanism, including functional rotors (FR) and
ectopic foci (EF). In this work we propose an approach
for locating FR and EF in potential maps, which were
tested with mathematical phantoms. 12 phantoms were
created (128x128 array, 4 s, Fs 500 Hz), simulating the
motion of: FR (4 maps), EF (4 maps) and superpositions
of these (4 maps). These were downsampled to different
grids from 16x16 to 8x8, simulating electrode acquisition.
Noise (SNR from 2 to 60) was added. To locate the mecha-
nism, the signals were filtered and interpolated. Farneback
optical flow was applied to compute the motion vector field
(MVF). The MVF was normalized and its temporal aver-
age was calculated. Finally, we computed curl and diver-
gence, by using a x and y oriented 11 × 11 Sobel filter as
a estimation of the of the partial derivatives. The location
of extrema in the curl and divergence maps were used for
locating FR and EF respectively. Method robustness was
tested by comparing the algorithm performance on differ-
ent grid sizes and SNR. The mechanism was considered to
be detected accurately if the position was within a normal-
ized error of 5% from its respective phantom location. The
results showed that our approach was able to locate both
mechanisms, but revealed a dependency on spatial resolu-
tion.

1. Introduction

Atrial Fibrillation (AF) is the most common supra-
ventricular arrhythmia and has different underlying acti-
vation mechanism, including functional rotors (FR) and
ectopic foci (EF) [1, 2]. AF is also associated with
an increased morbidity related to heart failure and ictus
[2–4]. FR consist of functional reentrant activity where the
curved wavefront and wavetail meet each other at a singu-
larity point, or phase singularity, a point where all phase
values converge [5–7]. As demonstrated in experiments
with isolated hearts and supported by animal and patient

studies, self-sustained FR can be present in the atria, lead-
ing to complex patterns of activation, possibly being the
source of paroxysmal and chronic AF [8]. EF describes
a condition where a set of cells depolarize in a indepen-
dent rhythm that fires spontaneously, creating a wave that
spread radially [1, 9].

1.1. Optical Flow

Optical flow (OF) is the apparent motion of brightness
patterns in an image sequence. Sparse OF provides a vec-
tor field for special features, normally pixels corresponding
to edges or corners of objects, while dense OF provides a
vector field for all pixels in the image. Dense algorithms
related to motion vector field (MVF) analysis are known to
have medical imaging applications, in particular for tem-
poral analysis of cardiac images [4, 10–13]. A number of
different methods exist for quantification of OF [14–16]
of which the dense OF algorithms by Horn and Schunck
(HS) and Farneback (FOF) have been used extensively in
the literature.

Furthermore, there are various ways to detect FR and EF
and the proposed methods could use techniques based on
phase analysis, local activation time, or OF.

Rı́os-Muñoz et al. (2018) used signals acquired from pa-
tients with persistent AF and in silico simulations to vali-
date an approach using activation time maps [4]. Firstly the
signal was approximated by a linear function obtained by
minimizing the mean square error, and the activation was
detected from the function slope. For the in silico models,
the authors deployed a squared 16 × 16 node grid, emulat-
ing 256 different electrodes recording. After the transform,
the signal was interpolated using Shepard’s method [4,17].
Rı́os-Muñoz and others used OF from the isochronal maps,
estimated by HS [4,15]. For locating rotational activity, the
authors applied convolution to the MVF with a kernel con-
taining a rotational pattern. Bellmann et al. (2018) also
used OF, applied to transformed signals, with HS method
[12, 15]. In this study, OF was also used to identify FR
and EF, and compare the located mechanisms before and
after surgical intervention. Roney et al. (2021) used OF
from maps of normalized filtered derivatives of signals to
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study preferential pathways in AF patient and models [13].
These authors also used HS for OF estimation. OF was
used to construct a streamline visualization that, in turn,
was used to perform qualitative analyses of FR and EF,
among other analyses [13].

As can be seen, several studies have applied HS to the
analysis of cardiac potential maps, which could be due to
its computational efficiency and ease of implementation.
Despite this, alternative methods exist for dense OF quan-
tification, including Farneback’s OF, which is a newer and
more capable method than HS [18], and was used in this
work.

FOF is a motion estimation algorithm based on a poly-
nomial expansion transform [16]. With this algorithm
the motion is calculated for every pixel, generating a bi-
dimensional MVF for every pair of consecutive frames.
The neighborhood of each pixel is approximated by a
quadratic polynomial expansion given by Equation 1 [16]:

f(x) = xTAx+ bTx+ c (1)

where A is a symmetric matrix, b is a vector and c a scalar.
These values are obtained by the weighted least square
method, with the weight value decreasing radially from
the center, and the neighborhood size is an arbitrary pa-
rameter. The displacement d is estimated by considering
the polynomial expansion for the second frame f2(x) the
polynomial expansion for the first frame after went through
a translation f1(x− d), showing that the translation d can
be found by solving the Equation 2:

d = −1

2
A−1

1 (b2 − b1) (2)

In this work, we propose and validate a method to de-
tect two FA mechanisms by using FOF and MVF analysis,
and distinguish EF and FR, and also clockwise and coun-
terclockwise FR.

2. Methods

Figure 1 illustrates our pipeline for location of EF and
FR mechanisms using FOF to compute the MVF and then
estimating the operators curl and divergence. The method-
ology was validated using mathematical phantoms. The
phantoms were also used for parameter tuning and assess-
ing algorithm robustness.

2.1. Phantom Creation

12 phantoms were created (128x128 grid with 2000 time
samples at 500Hz), simulating EF (4 phantoms), FR (4
phantoms) and superposition of both mechanisms (4 phan-
toms, see supplementary material [19]). Equation 3 sum-
marizes the EF phantom (PEF ) creation. The EF phan-
toms were created by: (i) determine the position (i0, j0)
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Figure 1. Pipeline for the mechanism location approach.

of the mechanism center; (ii) compute the Euclidean dis-
tance from each pixel, with position (i, j), to the mecha-
nism center, then multiplied by an arbitrary coefficient A
related to spatial propagation of the signals; (iii) for each
time instant, add a temporal increment I(t) to the map val-
ues, related to the sampling frequency (fs) and the mecha-
nism’s underlying activation frequency (F ); and (iv) these
values were used in a reverse sawtooth function, truncated
to the 4th order of its respective Fourier series SAW (x),
used as a simple approximation of the activation potential.

PEF (i, j, t) = SAW (A||v⃗||+ I(t)) (3)
v⃗ = (i− i0, j − j0)

I(t) =
t

2fsFπ

SAW (x) = −
4∑

n=1

1

n
sin(xn)

Equation 4 summarizes the creation of the FR phantom
(PFR). The FR phantom was created by: (i) selecting
two positions (i0, j0) and (i1, j1) for the mechanism: one
clockwise and another counter-clockwise; (ii) two phase
maps Ph0 and Ph1 were created by calculating the relative
angle from each pixel to the mechanism position; (iii) the
angle θ, referring to the relative mechanism positions, was
subtracted from Ph0 and added to Ph1, aligning the maps;
(iv) the maps were multiplied by a weight, w, summed,
then a temporal increment I(t) was added to these values;
and finally (v) the combined phase maps were used in a re-
verse sawtooth function SAW (x) as previously described.

PFR(i, j, t) = SAW (Ph0w + Ph1(1− w) + I(t)) (4)
Ph0 = atan2(j − j0, i− i0)− θ

Ph1 = −atan2(j − j1, i− i1)− π + θ

θ = atan2(j0 − j1, i0 − i1)

v⃗ = (i− i0, j − j0), v⃗1 = (i1 − i0, j1 − j0)

w = min (max (compv⃗1 v⃗, 0) , 1)

Here, atan2(a, b) is a function similar to tan−1(a/b),
but considers the sign of a and b separately so as to produce
a domain from −π to +π instead of −π/2 to +π/2).

Page 2



Figure 2. Divergent and curl maps and nMVF for three different phantoms (FR, a EF and a superposition, respectively), for
a 16x16 grid with SNR 60. The blue dots represents FR position in the curl maps and orange dots represents EF position
in the divergent maps.

To simulate electrode acquisition, the phantom signals
were sampled in grids from 8x8 to 16x16, and noise with
SNR from 60 to 2 was applied to the signals to evaluate the
method’s robustness to noise degradation.

2.2. Determination of mechanism location

Figure 1 shows the main steps for our mechanism lo-
cation approach. Initially, the signals are filtered with a
Butterworth bandpass filter, then interpolated with cubic
splines. Next, the FOF algorithm, available in the OpenCV
library (v.4.5.4) for Python 3, is used, being applied to each
pair of consecutive time samples, obtaining the MVF. This
is normalized and its temporal average calculated (nMVF),
a process that decreases random artifact components and
amplifies persistent patterns, as performed in other works
[4, 12]. The curl and divergent potential maps were ob-
tained by: (i) Approximating the partial derivatives in x
and y directions. Sobel filters of size of 11 × 11 pix-
els were applied to each component of the nMVF, respec-
tively nMV Fx and nMV Fy , providing the estimates of
∂(nMV Fx)

∂x ,∂(nMV Fy)
∂x , ∂(nMV Fx)

∂y , ∂(nMV Fy)
∂y . (ii) Next,

curl and divergent maps were obtained using Equations 5
and 6:

Div.Map =
∂(nMV Fx)

∂x
+

∂(nMV Fy)

∂y
(5)

Curl Map =
∂(nMV Fy)

∂x
− ∂(nMV Fx)

∂y
(6)

(iii) The mechanisms were detected and located in the curl
and divergent maps by applying a threshold to the curl and
divergent maps, then calculating the center of each region
with value above the threshold. The mechanisms detected
from the curl maps are FR and from the divergent maps EF.
(iv) The method accuracy was measured by considering as
true positive a detection with normalized error below 5%.

3. Results and discussion

Figure 2 show the obtained nMVF, curl and divergent
maps for a FR, a EF and a superposition phantom, respec-
tively, and on a 16x16 grid with SNR 60. As expected, FR
appear as extrema in the curl maps, with its sign showing
the direction of rotation. In the same way, EF appears as
maxima in the divergent maps. The divergence operator
shows higher absolute values where there is no conserva-
tion of energy. Considering the electrophysiology of the
cardiomyocytes, the energy would be generated when a
localized set of activated cells trigger a larger number of
cells, increasing the signal intensity. This would lead to a
maximum divergence when the set of cells activates all the
surroundings, which is the nature of an EF.

Table 1. Location accuracy of the algorithm for different
levels of SNR and acquisition grids.

Grid
SNR 16x16 12x12 10x10 8x8

60 1.000 0.717 0.708 0.633
20 1.000 0.717 0.875 0.646

PFR 10 1.000 0.725 0.875 0.667
5 1.000 0.750 1.000 0.708
2 1.000 0.625 1.000 0.375

60 1.000 1.000 1.000 0.000
20 1.000 1.000 1.000 0.000

PEF 10 1.000 1.000 1.000 0.000
5 1.000 1.000 1.000 0.000
2 1.000 1.000 0.250 0.000

60 1.000 0.917 0.542 0.417
20 1.000 0.917 0.542 0.417

Sup. 10 1.000 0.875 0.583 0.417
5 1.000 0.875 0.667 0.500
2 0.750 0.250 0.000 0.000

Table 1 shows the results for the analysis of accuracy
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for the various phantoms. In the FR phantom, with 10×10
and 8×8 grid, the accuracy did not have a maximum value
in the higher SNR, which was verified to be due to false
positives that disappear as the noise increases. The curl
value at the FR location had high variance as the grid and
SNR changes, which made it difficult to set a value for the
threshold, as this value should be the same for all tests.

It is possible to see a sharp decrease in accuracy from
the 10×10 to 8×8 grid, for the EF phantoms. This de-
crease was more linear for the other phantoms. Therefore,
the results show reasonable noise robustness, for all SNR
values for the FR phantoms, and at least up to SNR 5 for
the others. However, results were dependent on the spatial
resolution of the maps. Qualitatively, the curl and diver-
gent maps seems to be highly correlated with the mecha-
nisms, perhaps improved processing of these maps could
lead to a more precise location.

4. Conclusions

In this preliminary study, we proposed an approach
based on optical flow and vector field operators for lo-
cating, and therefore tracking, two of the main AF mech-
anisms. Our results showed that the approach was suc-
cessful in locating the mechanisms, including ectopic foci,
even in low spatial resolution and SNR conditions.
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